Influence of Fossil-fuel Power Plant Emissions on the Surface PM2.5 in the Seoul Metropolitan Area, South Korea Okgil Kim¹⁾ • Byeong-Uk Kim²⁾ • Hyuncheol Kim^{3),4)} • Soontae Kim^{1),} * ¹⁾ Dept. of Environmental Engineering, Ajou University, Suwon, Korea, ²⁾ Georgia Environmental Protection Division, Atlanta, GA, ³⁾ NOAA/Air Resources Laboratory, College Park, MD, ⁴⁾ UMD/Cooperative Institute for Climate and Satellites, College Park, MD. #### Introduction - ✓ Many large fossil-fuel power plants are located near the Seoul Metropolitan Area (SMA), the highest population density and largest population area in South Korea. - Since NOx and SO_2 emissions from fossil-fuel power plants have significant impacts on the regional $PM_{2.5}$ air quality, the impact of emissions from additional fossil fuel based electricity generation on the air quality in the SMA needs to be understood and quantified. - ✓ Therefore, we estimate the contribution of fossil-fuel power plants on $PM_{2.5}$ concentration in SMA to support air quality planning with respect to future electricity demand changes. # Methodology # **♦**Modeling Domains # **♦**Modeling Period January, April, July, and October 2010 to represent winter, spring, summer, and fall #### **♦**Model Configuration We utilize the WRF - SMOKE - CMAQ framework. | CMAQ | | WRF | | | |----------------------|--|---------------------|--------------------------------|--| | Version | Version 4.7.1 | Version | Version 3.4.1 | | | Chemical Mechanism | SAPRC 99 | Micro Physics | WSM6(Hong and Lim, 2006) | | | Aerosol Module | AERO5 | Cumulus Scheme | Kaio-Fritsch(Kain 2004) | | | Boundary Condition | Default profile
for the 27km domain | Long wave radiation | RRTM(Mlawer et al, 1997) | | | Advection Scheme | YAMO | Long wave radiation | 14(11)1(11)14)101 01 41, 1997) | | | Horizontal Diffusion | Multiscale | Short wave | Dudhia Scheme | | | Vertical Diffusion | Eddy | PBLScheme | YSU(Hong et al, 2006) | | | Cloud Scheme | RADM | LSM Scheme | NOAH(Chen and Dudhia 2001 | | #### **◆**Analysis of Contributions Contributions from power plant are estimated using the BFM (Brute Force Method). Sensitivity: $\frac{--}{\Delta E}$ - I. SMA $PM_{2.5}$ Concentration from base case run, C_I - II. SMA $PM_{2.5}$ Concentration from 20 % reduction case, C_{II} - III. Sensitivity of SMA PM_{2.5} concentration to 20 % Emission Reduction of Power Plants $\Delta C = (C_I C_{II})$ - IV. Contribution of power plants $= 5 \times \Delta C$ #### **♦**Large Fossil–fuel Power Plant in South Korea - ✓ NOx and SOx emissions from fossil-fuel power plants is 91,227 tons and 52,372 tons in 2010. - ✓ These emissions account for 9 % of the total NOx emissions and 13 % of SOx emission in South Korea. #### **Results and Discussion** **♦** Model Performance Evaluation - ✓ The model showed the best performance in October (R²=0.802) and the worst performance in January (R²=0.515). However, there were many days with missing observations in January. Therefore, the estimated model performance statistics for January may not be used critically. - **◆Monthly Average PM**_{2.5} Contribution | Month | January | April | July | October | |--------------------|---------|-------|-------|----------------| | PM2.5 Conc. | 30.14 | 21.5 | 14.85 | 23.84 | | Contribution Conc. | 0.29 | 0.92 | 1.12 | 1.22 | | | | | | (Unit : μg/m³) | | | | | | | The largest PM_{2.5} contribution by power plants occurs in October while the smallest contribution happens in January. ### **♦**Hourly PM_{2.5} Concentrations and Maximum Contribution ✓ In January, power plant emissions showed an overall smallest contribution and while relatively larger contribution in October. #### **◆**Daily Contribution of PM_{2.5} and its major constituents - ✓ Simulated monthly $PM_{2.5}$ concentration in January was its highest among four months selected. - On October 11, $PM_{2.5}$ concentration was 63.3 μ g/m³ which is over the Korean air quality standard for 24-hr $PM_{2.5}$, 50μ g/m³. For the day, Power plant contribution is 7.1 μ g/m³ which is 14% of the standard. - ✓ In summer, among the components of $PM_{2.5}$, relative portion of sulfate and ammonium to the total $PM_{2.5}$ is increased although the contribution of nitrate is the most significant in general. #### **Conclusion and Implication** - Contribution of domestic fossil fuel power plant emissions to the surface $PM_{2.5}$ in SMA, South Korea where over 20 million people live was estimated. - ✓ The average monthly PM_{2.5} contribution in the SMA was $0.29\mu g/m^3$ in January and $1.22\mu g/m^3$ in October. The estimated annual average PM_{2.5} contribution is $0.9 \mu g/m^3$. - ✓ According to " 2^{nd} Metropolitan Air Quality Control Master Plan", South Korean government plans to improve regional annual PM_{2.5} concentrations from $27\mu g/m^3$ in 2010 to $20\mu g/m^3$ in 2024. - ✓ Air quality managers can utilize the results of this study to design anticipated power plant control requirements to keep up with additional energy supply plans such as '6th Electricity Supply Plan'. - Seasonal variations of $PM_{2.5}$ components may need to be accounted in the future air quality management. # Acknowledgement ✓ This work was supported by Korea Ministry of Environment and Korea Environment Institute.